Synthetic and Mechanistic Studies on the Antitumor Antibiotics Esperamicin A_1 and Calicheamicin γ_1 . Oxidative Functionalization of the 13-Ketobicyclo[7.3.1]tridecenediyne Core Structure: Construction of the Allylic Trisulfide Trigger

Philip Magnus,*,† Richard Lewis,‡ and Frank Bennett‡

Contribution from the Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, and Department of Chemistry, Indiana University, Bloomington, Indiana 47405. Received August 26, 1991

Abstract: The simple 13-ketobicyclo [7.3.1] tridecenediyne 3 core structure of the esperamicins/calicheamicin can be readily functionalized in an oxidative manner to introduce the 1,2 double bond and 3β -oxygen substituent. The 3β -hydroxyl substituent allowed the intramolecular introduction of a nitrogen functionality at C2, but the resulting cyclic carbamate was too resistant to hydrolysis to be synthetically useful. The allylic trisulfide trigger can be installed in a straightforward manner via Wittig chemistry on the 13-keto group. The relatively simple chemistry needed to functionalize the core system should allow access to a wide variety of analogues for biological evaluation of these potent antitumor agents.

Introduction

In the accompanying paper the synthesis of the core structure of calicheamicin 1 and esperamicin 2, namely, 13-ketobicyclo-

[7.3.1]tridecenediyne 3 is described. It is readily made from the commercially available components (Z)-dichloroethylene, acetylene, propargyl alcohol, and cyclohexane-1,2-dione. Scheme I summarizes the overall route. The propargylic alcohol 4 was regiospecifically complexed with $\text{Co}_2(\text{CO})_8$ to give the $\eta^2 \, \text{Co}_2(\text{CO})_6$ adduct 5 (84%), which on treatment with $\text{Tf}_2\text{O}/\text{CH}_2\text{Cl}_2/2,6$ -di-tert-butyl-4-methylpyridine (BMP) gave 6 (77%). Decomplexation of 6 by oxidation with iodine/benzene gave 3 (82%) as a stable crystalline compound.

The 13-ketobicyclo[7.3.1] enediyne 3 undergoes Bergman cycloaromatization at 79 °C in the presence of 1,4-cyclohexadiene to give 7 (>70%), $t_{1/2}$ 45 min; $k=2.56\times 10^{-4}~\rm s^{-1}$, $\Delta G^*=26.3$ kcal mol⁻¹ (37 °C). Thus 3 provides a stable prototype model core enediyne structure upon which to examine the introduction

¹Indiana University.

of an oxygen functionality at C3, C4, and C12 and nitrogen at C2, and installation of the allylic trisulfide trigger. This non-convergent strategy was adopted in order to investigate the types of transformations (particularly oxidative) that can be conducted on the intact enediyne core without destroying it. In this way it was hoped that a corpus of knowledge of enediyne chemistry could be accumulated which would be applicable to other members of this expanding new class of natural products.³

C1-C13 Bridgehead Enolate Chemistry

The cyclohexanone ring in 3 adopts a boat conformation (the C1, C12 bond is equatorial to accommodate the enedigne in the 10-membered ring), and consequently the axial C1 hydrogen atom is in the plane of the carbonyl π -system. This results in increased kinetic acidity since the developing carbanion at C13 enjoys direct resonance delocalization without the necessity for geometric changes

Treatment of 3 with Et₃N/t-BuMe₂SiOTf/CH₂Cl₂ at 20 °C for 5 days gave the bridgehead tert-butyldimethylsilyl enol ether 9 (54%) as a stable crystalline compound. More conveniently, 9 can be made from 3 by treatment with KHMDS/THF/t-BuMe₂SiOTf at -78 °C for 0.5 h in 100% yield. If LiHMDS is used instead of KHMDS, the bridgehead alkylated compound 11 (70%) is formed. Presumably the solvent tetrahydrofuran is cleaved by t-BuMe₂SiOTf to generate the alkylating agent 10 more rapidly than 8 is O-silylated. Treatment of 8 with i-Pr₃SiOTf/THF at -78 °C followed by warming to 0 °C gave the

[†]University of Texas at Austin.

⁽¹⁾ Magnus, P.; Carter, P.; Elliott, J.; Lewis, R.; Harling, J.; Pitterna, T.; Bauta, W. E.; Fortt, S. J. Am. Chem. Soc., preceding paper in this issue.
(2) Magnus, P.; Fortt, S.; Pitterna, T.; Snyder, J. P. J. Am. Chem. Soc. 1290, 112 4086

⁽³⁾ Dynemicin-Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; Van Duyne, G. D.; Clardy, J. J. Antibiot. 1989, 42, 1449. Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3715. Nocarzinostatin chromophore A: Napier, M. A.; Holmquist, B.; Strydom, D. J.; Goldberg, I. H. Biochem. Biophys. Res. Commun. 1979, 89, 635. Koide, Y.; Ishii, F.; Hasuda, K.; Koyama, Y.; Edo, K.; Katamine, S.; Kitame, F.; Ishida, N. J. Antibiot. 1980, 33, 342. Edo, K.; Mizugaki, M.; Koide, Y.; Seto, H.; Furihata, K.; Otake, N.; Ishida, N. Tetrahedron Lett. 1985, 26, 331. Calicheamicin-Lee, M. D.; Dunne, T. S.; Seigel, M. M.; Chang, C. C.; Morton, G. O.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464. Lee, M. D.; Dunne, T. S.; Chang, C. C.; Ellestad, G. A.; Seigel, M. M.; Morton, G. O.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3466. Esperamicins-Golik, J.; Dubay, G.; Groenewold, G.; Kawaguchi, M.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3462. Golik, J.; Clardy, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3461. Konishi, M.; Ohkuma, H.; Saitoh, K.; Kawaguchi, H.; Golik, J.; Dubay, G.; Groenewold, G.; Krishnan, B.; Doyle, T. W. J. Antibiot. 1985, 38, 1605.

Scheme Ia

Co (CO)₃

$$Co_2(CO)_4$$
 $Co_2(CO)_4$
 $Co_2(CO)_3$
 Co

aR = TBDMS

Scheme IIa

 $^{a}R = TBDMS.$

Scheme IIIa

 $^{a}R = TBDMS$

corresponding triisopropylsilyl enol ether 12 (86%). In an attempt to generate the propargylic-allylic anion derived from 9 in order to examine its reaction with oxygen electrophiles (introduction of C12 oxygen), we treated 9 with a variety of bases. In the cases of n-BuLi, s-BuLi, and t-BuLi, the enol ether was rapidly consumed and the only product isolated was 13 (7%), which when t-BuLi was used gave suitable crystals for X-ray crystallography (Figure 1, supplementary material, shows an ORTEP representation of 13). The structure of 13 shows that the t-BuLi has added to the C9 position to form the allenyl anion 9a (the propargyl resonance form is not shown). The anion 9a can transfer the SiMe₂Bu-t group (intramolecularly or intermolecularly) to generate the enolate derivative of 13, which upon work-up (protonation) gives 13.

Treatment of the bridgehead tert-butyldimethylsilyl enol ether 9 with phenylselenyl chloride followed by pyridine/ H_2O_2 gave the α,β -unsaturated ketone 14 (66%).⁴ It should be borne in mind that highly unsaturated molecules such as 14 have very simple ¹H NMR and ¹³C NMR spectra and as a consequence do not contain so much information (connectivity); thus it is important to be cautious when assigning structures. The enone 14 has unexceptional IR and UV spectral properties and undergoes reactions typically associated with an α,β -unsaturated ketone. For example, treatment of 14 with sodium peroxide gave the exceedingly stable epoxide 15 (56%, inert to PhSeNa, NaN₃/ZnI₂, 4-ClC₆H₄SH, BF₃·OEt₂). Heating 14 at 110 °C in 1,4-cyclohexadiene in the presence of 4-chlorothiophenol/N-methyl-

Scheme IVa

 $^{a}R = TBDMS.$

morpholine (cat.) provided the cycloaromatized adduct 16 (50%), convincingly demonstrating that formation of the putative 1,4-diyl can be triggered intermolecularly by thiol addition to C2 (change of C1 hybridization from sp² to sp³).⁵

Introduction of the C3 Oxygen Substituent

Treatment of 14 with trimethylsilyl triflate/NEt₃ gave the dienyl ether 17 (53%), which was directly treated with phenylselenenyl chloride to give a mixture of C1 and C3 phenylselenenyl adducts 18/19 (1:4.5), respectively. It was found that the enone 14 could be converted into the C1 phenylselenenyl adduct 18 (52%) without deleterious formation of 19 by treatment with the Nicolaou reagent N-(phenylselene)phthalimide, whereas treatment of 14 with phenylselenenyl chloride only gave products resulting from addition to the 10,11 acetylene, namely, 21. Oxidation of 18 with H_2O_2 /pyridine gave the 3 β -hydroxy 1,2-enone 20 (76%) via [2.3] sigmatropic rearrangement of the resulting selenoxide.

The 3β -hydroxybicyclo[7.3.1] enediyne system 20 is available in two oxidative steps, both involving selenium chemistry. At this stage in the development of this research we did not have a method to introduce the 12β -hydroxy substituent. In a completely empirical manner we decided to treat the enol ether 9 with a variety of oxidizing agents with the expectation of observing either C12 functionalization (propargylic) or C3 functionalization (allylic). Without belaboring the fact, after the enol ether 9 was treated with a range of oxidants that only led to complex mixtures or complete destruction of 9, it was found that treatment of 9 with SeO₂ (1.1 equiv)/dioxane at 25 °C for 3 h gave the hemiketal 22 (53%) as a stable crystalline material, mp 114–116 °C, along with the enone 14 (14%).

(5) Magnus, P.; Lewis, R. T. Tetrahedron Lett. 1989, 30, 1905.

(6) Nicolaou, K. C., Claremon, D. A.; Barnette, W. E.; Seitz, S. P. J. Am. Chem. Soc. 1979, 101, 3704. Nicolaou, K. C.; Petasis, N. A.; Claremon, D. A. Tetrahedron 1985, 41, 4835.

(7) For a review of [2.3] sigmatropic rearrangements, see: Reich, H. J.

(7) For a review of [2.3] sigmatropic rearrangements, see: Reich, H. J. In Electrophilic Selenium Reagents in Organoselenium Chemistry; Liotta, D., Ed.; Wiley-Interscience: New York, 1987.

(8) Synthesis of the 12\(\beta\)-hydroxybicyclo[7.3.1]tridecenediyne core structure: Magnus, P.; Annoura, H.; Harling, J. J. Org. Chem. 1990, 55, 1709.

⁽⁴⁾ For numerous references to the α -selenenylation of ketones, see: Back, T. G. In *Electrophilic Selenium Reagents in Organoselenium Chemistry*; Liotta, D., Ed.; Wiley-Interscience: New York, 1987.

Scheme V

 $^{a}R = TBDMS.$

Scheme VIa

 $^{a}R = TBDMS.$

The structure and relative stereochemistry of 22 was determined by single-crystal X-ray crystallography. (Figure 2, supplementary material, shows an ORTEP representation of 22). Further exposure of 22 to SeO₂ (1.1 equiv)/dioxane at 50 °C for 16 h gave the 3β -hydroxy compound 23 (45%) along with starting material. Treatment of the hemihydrate 23 in pyridine with (N-dimethylamino) pyridine cleanly converted it into the 3β -hydroxy enone 20 (89%). The structure and relative stereochemistry of 23 was verified by single-crystal X-ray crystallography. (Figure 3, supplementary material, shows an ORTEP representation of 23.)

It was further found that SeO₂ (73 °C for 21 h) cleanly converted the enone 14 into the 3β -hydroxy enone 20 (75%) along with smaller amounts of the dienone 24 and the starting enone 14. This is a practical procedure that can be conducted on a 1-g scale to provide 788 mg of 20.

Introduction of the C2 Nitrogen Substituent

Treatment of the 3β -hydroxy enone 20 with ethoxycarbonyl isocyanate gave the carbamate 25, which readily underwent intramolecular conjugate addition upon chromatography over silica gel to give the cyclic carbamate 26. The reversible nature of this cyclization was demonstrated by treatment of 26 with potassium bis(trimethylsilyl)amide at -78 °C to give a mixture of 25 and 26 (1:1). As expected, the additional heterocyclic ring imposes increased strain in the transition state for cycloaromatization.

Heating 26 at 90 °C for 16 h in 1,4-cyclohexadiene resulted in 50% conversion into the aromatized adduct 28.

The cyclic carbamate 26 proved to be very resistant to hydrolysis without complete destruction. The only selective deprotection that could be achieved was the removal of the ethoxycarbonyl functionality by treatment with sodium carbonate in methanol, resulting in the formation of 27 (63%). Treatment of the alcohol 20 with sodium cyanate in the presence of trifluoroacetic acid gave the carbamate 29 (89%). Interestingly, if potassium cyanate is used, the alcohol 20 is recovered unchanged!¹⁰ The carbamate 29 was readily N-silylated by treatment with tert-butyldimethylsilyl triflate/NEt₃/CH₂Cl₂ to give 30 (95%). Treatment of the N-silylated derivative 30 with potassium bis(trimethylsilyl)amide at -78 °C followed by N-(phenylseleno)phthalimide gave a mixture of the bridgehead selenide 31 and the protonated compound 32 (2:1). Oxidation of the mixture with hydrogen peroxide/pyridine resulted in elimination of the intermediate selenoxide into the 10-membered ring to give the torsionally strained enone 33 (40% from 30). The infrared spectrum of 33 exhibits two carbonyl stretching frequencies at 1759 (carbamate) and 1744 cm⁻¹ (C13 enone carbonyl). The ¹H NMR spectrum shows the C12 enone proton at δ 5.67 with a small coupling of 1.5 Hz to the C9 olefinic proton. The bridgehead protonated compound 32 can be converted into the enone 33 (44%) by the same procedure used to convert 30 into 33. Mild acid hydrolysis of 33 removed the N-silyl protection resulting in the carbamate 34. Ring opening of the cyclic carbamate 34 could not be achieved without complete destruction of the molecule.

Consequently, while the transformations described above provide a simple way to introduce the nitrogen functionality at C2, and may be of value for the synthesis of analogues, this route was not pursued further.

Construction of the Allylic Trisulfide Trigger

While the allylic trisulfide¹¹ might appear to be a formidable challenge, there is in fact a reasonable body of literature, particularly the work of Harpp, that shows the construction of allylic trisulfides to be a relatively straightforward task.¹² At least in the case of the intermolecular version, the key issue is controlling the stereochemistry of the allylic substituent. On steric grounds alone, it may be predicted that the reaction of the enone 14 with a stabilized phosphonate carbanion should position the more

 1974, 30, 468. Ariga, S.; Oshita, S.; Tamada, T. Lancet 1981, 1, 150.
 (12) Harpp, D. N.; Steliou, K.; Chen, T. H. J. Am. Chem. Soc. 1978, 100, 1222. Harpp, D. N.; Ash, D. K. Int. J. Sulfur Chem., Part A 1971, 1, 211. Sullivan, A. B.; Boustany, K. Int. J. Sulfur Chem., Part A 1971, 1, 207. Mott, A. W.; Barany, G. Synthesis 1984, 657.

⁽⁹⁾ Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1972, 94, 7154. Arigoni, D.; Vasella, A.; Sharpless, K. B.; Jensen, H. P. J. Am. Chem. Soc. 1973, 95, 7917. Jensen, H. P.; Sharpless, K. B. J. Org. Chem. 1975, 40, 264. Sharpless, K. B.; Gordon, K. M. J. Am. Chem. Soc. 1976, 98, 300. Magnus, P.; Bennett, F. Tetrahedron Lett. 1989, 30, 3637. Stable hydrates of bridged ketones have been isolated, the most recent being: Bonjoch, J.; Quirante, J.; State of the Post of the Serret, I.; Bosch, J. Tetrahedron Lett. 1989, 30, 1861.

⁽¹⁰⁾ Loev, B.; Kormendy, M. F. J. Org. Chem. 1963, 28, 3421.
(11) General reviews on polysulfides: Harpp, D. N. Perspectives in The Organic Chemistry of Sulfur; Studies in Organic Chemistry 28; Zwanenburg, B., Klunder, A. J. H., Eds.; Elsevier: Amsterdam, 1987. Kuthey, G. W.; Turnbull, K. Chem. Rev. 1982, 82, 333. Diallyl trisulfide and methyl allyl trisulfide are natural products: Augusti, K. T.; Mathew, P. T. Experiential 1974, 20, 468. Asign S. Ochiba S.: Tamada T. Lancet 1981, 1, 150.

Scheme VII^a

 $^{a}R = TBDMS.$

Scheme VIII^a

 $^{a}R = TBDMS.$

Scheme IX. Allylic Trisulfide Chemistry^a

 $^{a}R = TBDMS.$

sterically bulky groups toward the enone double bond. This then leads to the correct relative stereochemistry required for esperamicin/calicheamicin. Indeed treatment of the enone 14 with

diethyl cyanomethylphosphonate/NaH/DME gave the α,β -unsaturated nitrile 35 (90%), as a single stereoisomer. At this stage we did not know the relative stereochemistry of 35, but as will

be seen later, the configuration of the double bond was shown to be that depicted. The nitrile was reduced using diisobutyl-aluminum hydride, first to give the aldehyde 35a (after hydrolysis of the intermediate the imine), and repetition of the same reduction gave the allylic alcohol 36 (89.5% overall yield from 35). The derived mesylate was converted into the thioacetate 37 (92%) by treatment with freshly prepared sodium thioacetate in methanol. If commercial sodium thioacetate is used, the yield of 37 is substantially reduced.

Subsequent reduction of the thioacetate 37 with lithium aluminum hydride in ether followed by quenching the intermediate thiolate with N-(benzylthiosulfenyl)phthalimide12 gave the Sbenzyl trisulfide 38 (92%). The S-benzyl derivative was chosen [(-SCH₂Ph) is large enough to detect, for example, the corresponding disulfide (-SCH₂Ph)₂] in order to examine the thermal stability of 38 with respect to potential [2.3] sigmatropic rearrangement processes¹³ and potential disproportionation processes.¹⁴ In the event thermolysis of 38 in toluene at reflux for several days only resulted in complete recovery of 38, and no evidence for any decomposition.14 The SMe analogue can be made in the same way. The sequence of transformations from the allylic alcohol to the trisulfide was used by Danishefsky¹⁵ in his synthesis of calicheamicinone, demonstrating that it is completely compatible with the more highly functionalized bicyclo[7.3.1] enediyne systems.

We also examined more nucleophilic sources of thiolate, and it was in the course of this study, by chance, that unequivocal chemical evidence for the assigned stereochemistry of the 13,14 double bond was found. When the xanthate 39 was hydrolyzed using ethylenediamine, the cyclic sulfide 40 (60%) was isolated, thus confirming the stereochemical assignments.

Summary

The simple 13-ketobicyclo[7.3.1]tridecenediyne 3 core structure can be readily functionalized in an oxidative stepwise manner to introduce the 1,2 double bond and 3-oxygen substituent. While the 4β -hydroxyl substituent allowed the intramolecular introduction of the nitrogen functionality at C2, the resulting cyclic carbamate was too resistant to hydrolysis to be synthetically useful. The allylic trisulfide can be installed in a straightforward manner via Wittig chemistry on the 13-keto group. The relatively simple chemistry needed to functionalize the core system should allow access to a wide variety of analogues for biological evaluation. We are currently applying the above chemistry to a 13-keto-bicyclo[7.3.1]tridecenediyne core in which the 12β -hydroxyl substituent is present from an early stage in the synthesis.⁸

Experimental Section

Melting points were taken on a Thomas-Hoover capillary tube apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 1600 FT1R spectrophotometer or a 881 grating spectrophotometer either neat or in CHCl₃ as indicated. Ultraviolet spectra were recorded on a Perkin-Elmer Lambda 3B UV/vis spectrophotometer in the indicated solvents. Proton NMR spectra were recorded on a General Electric QE-300, 300-MHz spectrometer or a Bruker 500-MHz spectrometer in the indicated solvent and are reported in ppm downfield from TMS. Carbon-13 NMR spectra were recorded on a General Electric QE-300 spectrometer at 75 MHz in the solvent indicated and are also reported in ppm downfield from TMS. Elemental analyses were performed by Midwest Microlab in Indianapolis, IN. Routine monitoring of reactions was performed using Merck 60 F₂₅₄ silica gel, aluminum-backed TLC plates. Preparative layer chromatography was performed using Merck

 $60~F_{254}$ silica gel, glass-supported plates. Flash column chromatography was performed with the indicated solvents on Merck $60H~F_{254}$ silica gel. Gas-liquid chromatography was performed on a Hewlett-Packard 5890 system, using an HP-1 capillary column. Air- and moisture-sensitive reactions were performed under the usual inert atmosphere conditions. Reactions requiring anhydrous conditions were performed in glassware dried by a Bunsen flame or in an oven at $140~^{\circ}\mathrm{C}$ and then cooled under argon, and performed under a blanket of argon. Solvents and commercial reagents were dried and purified before use: Et_O and THF were distilled from sodium benzophenone ketyl; CH_2Cl_2 and benzene were distilled from calcium hydride under argon.

5,13-Bis[(tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]trideca-8,13-diene-6,10-diyne (9). To a solution of the ketone 3 (2.53 g, 8.05 mmol) in dry tetrahydrofuran (100 mL) at -78 °C was added a toluene solution of 0.5 M potassium bis(trimethylsilyl)amide (17.7 mL, 1.1 equiv). The solution was stirred for 5 min and tert-butyldimethylsilyl triflate (2.25 mL, 1.2 equiv) added dropwise. After 20 min at -78 °C the mixture was quenched with saturated aqueous sodium bicarbonate solution (100 mL) and extracted with pentane (2 × 50 mL). The dried (MgSO₄) solution was evaporated in vacuo to give an oil which was purified by chromatography over silica gel, eluting with 10% ether/petroleum ether to give 9: 3.63 g 100%; mp 82-85 °C; IR (CHCl₃) 2355, 2331, 2167, 1637 cm⁻¹; H NMR (300 MHz, C_6D_6) δ 5.43 (2 H, s), 3.35 (1 H, d, J = 16.3 Hz), 2.19 (1 H, d, J = 16.3 Hz), 2.15-2.00 (4 H, m), 1.83 (1 H, m), 1.57 (1 H, m), 1.02 (18 H, s), 0.41 (3 H, s), 0.39 (3 H, s), 0.22 (6 H, s). Anal. Calcd for $C_{25}H_{40}O_2Si_2$: C, 70.03; H, 9.40. Found: C, 69.85; H, 9.35.

Carrying out the same reaction as above using triisopropylsilyl triflate to quench the potassium enolate gave 12 (73.3 mg, 86% from 57.2 mg of 3): mp 79–81 °C (ether/hexane); lR (CHCl₃) 2179, 1661, 1631 cm⁻¹; lH NMR (300 MHz, C_6D_6) δ 5.42 (1 H, d, J = 9.3 Hz), 5.38 (1 H, d, J = 9.3 Hz), 3.48 (1 H, d, J = 16.5 Hz), 2.14 (1 H, d, J = 16.5 Hz), 2.14–1.97 (4 H, m), 1.81 (1 H, m), 1.53 (1 H, m), 1.27 (3 H, m), 1.21 (12 H, d, J = 9.5 Hz), 1.80 (6 H, d, J = 9.5 Hz), 0.96 (9 H, s), 0.34 (3 H, s), 0.29 (3 H, s); HRMS calcd for $C_{28}H_{46}O_2Si_2$ 470.3036, found m/e 470.3036. The derived n^2 $Co_2(CO)_6$ adduct has ¹H NMR (300 MHz, C_6D_6) δ 6.22 (1 H, d, J = 10.8 Hz), 5.13 (1 H, d, J = 10.8 Hz), 4.62 (1 H, d, J = 15.5 Hz), 3.18 (1 H, d, J = 15.5 Hz), 2.28–1.92 (6 H, m), 1.56 (1 H, m), 1.37 (2 H, m), 1.24 (12 H, d, J = 2.2 Hz), 1.21 (6 H, d, J = 2.2 Hz), 0.99 (9 H, s), 0.37 (3 H, s), 0.31 (3 H, s).

Conducting the above experiment with lithium bis(trimethylsilyl)-amide gave the bridgehead alkylated adduct 11: 70%; ¹H NMR (300 MHz, C_6D_6) δ 5.45 (1 H, dd, J = 1.2, 9.4 Hz), 5.36 (1 H, d, J = 9.4 Hz), 3.41 (2 H, t, J = 5.9 Hz), 2.88 (1 H, d, J = 17.1 Hz), 2.81 (1 H, m), 2.18 (1 H, m), 1.96 (1 H, dd, J = 17.1, 1.2 Hz), 1.85 (2 H, m), 1.5-1.04 (8 H, m), 1.1 (9 H, s), 0.96 (9 H, s), 0.47 (3 H, s), 0.44 (3 H, s), 0.03 (6 H, s); ¹³C NMR (75 MHz, C_6D_6) δ 206.80, 124.70, 121.05, 100.43, 97.96, 91.86, 83.20, 74.29, 62.64, 53.84, 39.20, 34.74, 33.06, 30.75, 26.83, 25.94, 25.89, 20.32, 18.35, 18.31, 16.29, -2.95, -3.14, -5.29; HRMS calcd for $C_{29}H_{48}O_3$ Si 500.3142, found m/e 500.3142.

13-Keto-5-[(tert-butyldimethylsilyl)oxy]-6-(tert-butyldimethylsilyl)- 9β -tert-butylbicyclo[7.3.1]trideca-6,7-dienyne (13). To a solution of the enol ether 9 (38.8 mg, 0.091 mmol) in dry tetrahydrofuran (1 mL) at -78 °C was added a solution of t-BuLi (64 μL of a 1.7 M solution in pentane). After 30 min at -78 °C trimethylsilyl chloride (35 mL, 0.27 mmol) was added and the mixture held at -78 °C for an additional 30 min. The solution was quenched with saturated aqueous sodium bicarbonate solution (5 mL) and extracted with pentane (10 mL). The dried (MgSO₄) pentane solution was evaporated in vacuo to give an oil. Purification by plate layer chromatography on silica gel, eluting with hexane, gave recovered 9 (8.2 mg, 21%) and a polar component 13: 3.1 mg, 7%; mp 144-147 °C (from hexane); IR (CHCl₃) 1919 (m), 1742 (w), 1701 (s) cm⁻¹; ¹H NMR (500 MHz, C_6D_6) δ 5.03 (1 H, d, J = 4.8Hz), 2.92 (1 H, dt, J = 4.8, 3.2 Hz), 1.20–2.73 (9 H, m), 1.11 (9 H, s), 1.03 (9 H, s), 0.94 (9 H, s), 0.67 (3 H, s), 0.49 (3 H, s), 0.28 (3 H, s), 0.07 (3 H, s); HRMS calcd for $C_{29}H_{50}O_2Si_2$ 486.3349, found m/e486.3351. Crystals suitable for single-crystal X-ray crystallography were grown from hexane

13-Keto-5-[(tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]trideca-1,8-dlene-6,10-diyne (14). To a solution of the enol ether 9 (3.63 g) in dichloromethane (50 mL) at -78 °C was added dropwise with stirring a solution of phenylselenenyl chloride (1.84 g, 1.1 equiv) in dichloromethane (25 mL). After 15 min at -78 °C pyridine (8.5 mL) was added to the above mixture followed by hydrogen peroxide (15 mL) aqueous solution). The cooling bath was removed and the mixture allowed to warm to room temperature. After 1 h saturated aqueous NaHCO₃ solution (10 mL) was added and the resulting mixture stirred for a further 6 h. The mixture was poured on to saturated aqueous NaHCO₃ solution (100 mL), the layers were separated, and the aqueous phase was extracted with ether (2 × 100 mL). The dried (MgSO₄) extracts evaporated in vacuo to give an oil which was purified by chro-

⁽¹³⁾ Barnard, D.; Houseman, H.; Porter, M.; Tidd, B. K. Chem. Commun. 1969, 371. Hofle, G.; Baldwin, J. E. J. Am. Chem. Soc. 1971, 93, 6307. Baechler, R. D.; Hummel, J. P.; Mislow, K. J. Am. Chem. Soc. 1973, 95, 4442

⁽¹⁴⁾ Pickering, T. L.; Saunders, K. J.; Tobolsky, K. J. Am. Chem. Soc. 1967, 89, 2364. Trivette, C. D.; Coran, A. Y. J. Org. Chem. 1966, 31, 100. (15) Haseltine, J. N.; Cabal, M. P.; Mantlo, N. B.; Iwasawa, N.; Yamashita, D. S.; Coleman, R. S.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1991, 113, 3850. Haseltine, J. N.; Danishefsky, S. J. J. Org. Chem. 1990, 55, 2576. Cabal, M. P.; Coleman, R. S.; Danishefsky, S. J. J. Am. Chem. Soc. 1990, 112, 3253. Magnus, P.; Lewis, R. T.; Bennett, F. J. Chem. Soc., Chem. Commun. 1989, 916. Ellestad, G. A.; Hamann, P. R.; Zein, N.; Morton, G. O.; Siegel, M. M.; Pastel, M.; Borders, D. B.; McGahren, W. J. Tetrahedron Lett. 1989, 30, 3033.

matography over silica gel, eluting with 10% ether/petroleum ether to give 14: 1.75 g, 66%; IR (CCl₄) 2950, 2030, 2855, 2194, 1710, 1250, 1156, 978, 836, 780 cm⁻¹; λ_{max} (ϵ MeOH) 237 (4140), 272 (3880) nm; ¹H NMR (300 MHz, CDCl₃) δ 6.35 (1 H, ddd, J = 0.55, 1.5, 3.7 Hz), 5.82 (2 H, s, ABXY in C_6D_6), 3.67 (1 H, dd, J = 16.5, 1.25 Hz), 3.01 (1 H, d, J = 16.5 Hz), 2.46-2.51 (2 H, m), 2.32 (1 H, m), 2.15 (1 H, m)m), 0.92 (9 H, s), 0.21 (3 H, s), 0.17 (3 H, s); ¹³C NMR (75 MHz, CDC1₃) δ 192.45, 138.46, 136.78, 124.24, 120.90, 100.58, 95.96, 91.57, 74.45, 34.86, 25.88, 25.30, 24.00, 18.38, -2.94, -3.27; HRMS calcd for $C_{19}H_{24}O_2Si$ (M⁺ - Bu' $C_{15}H_{15}O_2Si$) 255.0847, found m/e 255.0838.

13-Keto-5-[(tert-butyldimethylsilyl)oxy]-1,2β-oxabicyclo[7.3.1]tridec-8-ene-6,10-dlyne (15). A solution of the enone 14 (23 mg) in methanol (1 mL) at 5 °C was treated with basic hydrogen peroxide solution (300 μ L, 1.5 mL of H₂O₂/130 mg of NaOH) for 3 h. The mixture was poured into water (10 mL) and extracted with ether (10 mL). The dried (Mg-SO₄) ether layer was evaporated in vacuo and the residue purified by PLC (10% ether/petroleum ether) to give 15: 13.6 mg, 56%; IR (CCl₄) 2958, 2936, 2895, 2860, 2200, 1748, 1462, 1335, 1170, 1084, 952, 910, 800 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.92 (1 H, dd, J = 0.6, 9.8 Hz), 5.89 (1 H, d, J = 9.8 Hz), 3.67 (1 H, d, J = 16.9 Hz), 3.36 (1 H, d, J = 16.9 Hz)m), 2.37 (1 H, dddd, J = 1.8, 5.8, 12.8, 15.6 Hz), 2.30 (1 H, d, J = 15.6Hz), 2.07 (1 H, dd, J = 1.4, 16.9 Hz), 1.98 (1 H, dt, J = 5.1, 13 Hz), 1.88 (1 H, dddd, J = 0.8, 2.1, 5.7, 13.3 Hz), 0.90 (9 H, s), 0.18 (3 H, s), 0.16 (3 H, s); 13 C NMR (125 MHz, CDCl₃) δ 194.61, 124.32, 121.27, 96.80, 94.80, 93.06, 86.35, 74.74, 61.51, 59.46, 25.77, 23.54, 22.36, 18.30, -3.10, -3.32; HRMS calcd for $C_{19}H_{24}O_3Si$ (M⁺ - Bu', $C_{15}H_{15}O_3Si$) 271.0791, found m/e 271.0799.

1-[(tert-Butyldimethylsilyl)oxy]-10β-thiophenyltricyclo[7.3.10^{2.7}]trideca-2,4,6-trien-13-one (16). A solution of 4-chlorothiophenol (31 mg, 3.36 equiv), N-methylmorpholine (21 μ L), and the enone 14 (20 mg) in 1,4-cyclohexadiene (1 mL) was heated in a sealed ampule under argon. After heating at 110 °C for 44 h the mixture was evaporated and the residue purified by PLC (10% ether/petroleum ether to give 16: 16 mg, 50%; IR (CC1₄) 2930, 2855, 1738, 1450, 1160, 1082, 918 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 0.24 (3 \text{ H, s}), 1.75-1.93 (3 \text{ H, m}), 2.54 (1 \text{ H, m}),$ 2.96 (1 H, m), 3.09 (1 H, d, J = 17.8 Hz), 3.50 (1 H, dd, J = 7.7 and 17.8 Hz), 3.73 (1 H, m), 7.04 (1 H, dd, J = 0.8, 7.6 Hz), 7.21 (1 H, dt, J = 1.4, 7.4 Hz), 7.28 (1 H, m), 7.32 (2 H, d, J = 7 Hz), 7.41 (2 H, d, J = 8.7 Hz), 7.60 (1 H, dd, J = 1.3, 7.9 Hz); ¹³C NMR (125 MHz, CDCl₃) δ -2.28 (q), -2.32 (q), 18.91 (s), 26.29 (q), 25.04 (t), 30.30 (t), 41.20 (t), 49.98 (d), 55.12 (d), 80.30 (s), 127.52 (d), 129.40 (d), 131.80 (s), 133.23 (s), 134.26 (s), 134.94 (d), 142.90 (s), 208.81 (s); HRMS calcd for $C_{25}H_{31}O_2SiSC1$ (M⁺ - Me, $C_{24}H_{28}O_2SiSC1$) 443.1268, found m/e 443.1262.

 3β -Hydroxy-13-Keto-5-[(tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]trideca-1,8-diene-6,10-diyne (20). To a mixture of the enone 14 (15 mg) and N-(phenylseleno)phthalimide (16 mg, 1.1 equiv) in dry tetrahydrofuran (1.0 mL) was added DBU (14 µL, 2 equiv). After 18 h at 20 °C TLC indicated approximately 50% conversion to a less polar material. A further quantity of N-(phenylseleno)phthalimide (14 mg) was added and the mixture stirred for a further 24 h. The solution was evaporated and the residue purified by PLC (silica gel/10% ether/petroleum ether to give 18 (11.8 mg, 52%; 68% based on recovered 14) and recovered enone 14 (3.5 mg). To a solution of the allylic selenide 18 (11.8 mg) in dichloromethane (1.0 mL) and pyridine (500 μ L) at -20 °C was added hydrogen peroxide (1.0 mL of a 30% aqueous solution). The mixture was allowed to warm to 20 °C; saturated aqueous NaHCO₃ (1.5 mL) added was and stirring continued for a further 4 h. The mixture was poured into saturated aqueous NaHCO3 (10 mL) and extracted with dichloromethane $(2 \times 5 \text{ mL})$ and ether $(1 \times 5 \text{ mL})$. The dried (MgSO₄) extract was evaporated in vacuo and the residue purified by PLC (silica gel, 40% ether/petroleum ether to give the 3β -hydroxy enone 20: 6.3 mg, 76%; IR (CCl₄) 3410, 2940, 2855, 2190, 1710, 1255, 1150, 975 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.38 (1 H, dd, J = 2.3, 3.0 Hz), 5.84 (1 H, dd, J = 0.7, 9.7 Hz), 5.81 (1 H, dd, J = 0.5, 9.7 Hz), 4.55 (1 H, m), 3.70 (1 H, dt, J = 0.7, 16.6 Hz), 3.04 (1 H, dd, J = 1.1, 16.6 Hz), 2.78 (1 Hz)H, ddd, J = 2.0, 6.1, 12.9 Hz), 2.08 (1 H, dd, J = 9.7, 12.9 Hz), 1.91 (1 H, m, exchanged), 0.92 (9 H, s), 0.21 (3 H, s), 0.18 (3 H, s); ¹³C NMR (125 MHz, CDCl₃) δ 11191.25, 139.58, 136.97, 124.62, 120.82, 100.05, 95.44, 91.48, 87.77, 74.53, 67.00, 25.81, 23.90, 18.33, -2.95,-3.24; HRMS calcd for $C_{19}H_{24}O_3Si$ 328.1488, found m/e 328.1480.

13β-Hydroxy-5,13-bis[(tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]trideca-1,8-diene-6,10-diyne (22). Freshly sublimed selenium dioxide (5.7 mg, 0.051 mmol) was added to a stirred solution of 9 (20 mg, 0.047 mmol) in dioxane (1.0 mL). The resulting suspension was stirred at 20 °C for 3 h. The mixture was diluted with ether and poured in saturated aqueous NaHCO3 solution (5 mL). The organic phase was separated, dried (MgSO₄), and evaporated in vacuo to give a residue, which was purified by PLC on silica gel using ether/hexane 1:20) to give the enone 14 (2.0 mg, 14%) and the hemiketal 22: 11.0 mg, 53%; mp 114-116 °C

(ethanol/water); 1R (CHCl₃) 3505, 2190 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.82 (1 H, dd, J = 5.4, 2.9 Hz), 5.76 (1 H, dt, J = 9.5, 0.8 Hz), 5.71 (1 H, ddd, J = 9.53, 0.90, 0.70 Hz), 3.30 (1 H, d, J = 16.8 Hz), 2.98 (1 H, dt, J = 16.8, 0.7 Hz), 2.34-2.41 (1 H, m), 2.02-2.20 (3 H,m), 0.94 (9 H, s), 0.93 (9 H, s), 0.34 (3 H, s), 0.24 (3 H, s), 0.21 (3 H, s), 0.19 (3 H, s); ¹³C NMR (125 MHz, CDCl₃) δ 140.04, 129.30, 123.18, 121.52, 103.78, 99.34, 98.39, 85.91, 85.34, 76.21, 34.56, 26.32, 26.06, 25.61, 23.10, 18.24, 18.08, -0.31, -2.45, -2.61, -2.88; HRMS calcd for $C_{25}H_{40}O_3Si_2$ 444.2516, found m/e 444.2481. Anal. C₂₅H₄₀O₃Si₂: C, 67.53; H. 9.07. Found: C, 67.40; H. 8.88.

 3β , 13β -Dihydroxy-5, 13-bis[(tert-butyldimethylsilyl)oxy]bicyclo-[7.3.1]trideca-1,8-diene-6,10-diyne (23). Selenium dioxide (26.4 mg, 0.24 mmol) was added to a stirred solution of the hemiketal 22 (58.8 mg, 0.13 mmol) in dioxane (4 mL). The resulting suspension was stirred at 50 °C for 16 h and worked up as for 22 to give 23: 26.9 mg, 45%; mp 143-145 °C (dioxane/water); IR (CHCl₃) 3589, 3507, 1472, 1467 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.76 (1 H, d, J = 9.5 Hz), 5.71 (1 H, dd, J = 9.5, 1.4 Hz), 4.20 (1 H, br s), 4.16 (1 H, ddd, J = 7.6, 5.9, 4.5 Hz), 3.32 (1 H, d, J = 16.6 Hz), 3.01 (1 H, dd, J = 16.6, 1.4 Hz), 2.64 (1 H, dd, J= 14.4, 7.6 Hz), 2.10 (1 H, dd, J = 14.4, 4.5 Hz), 1.60 (1 H, br s), 0.92 (9 H, s), 0.918 (9 H, s), 0.34 (3 H, s), 0.23 (3 H, s), 0.20 (3 H, s), 0.17 (3 H, s); ¹³C NMR (75 MHz, CDCl₃) δ 220.5, 143.66, 130.67, 123.39, 121.62, 102.51, 99.47, 98.16, 85.74, 85.66, 63.89, 46.29, 26.31, 25.95, 25.47, 18.18, 18.04, -0.42, -2.55, -2.70, -2.83; HRMS calcd for C₂₅- $H_{40}O_4Si_2$ 460.2464, found m/e 460.2458. Anal. Calcd for $C_{25}H_{40}O_4Si_2$: C, 65.18; H, 8.76. Found: C, 65.02; H, 8.66.

Selenium Dioxide Oxidation of the Enone 14 To Give 20. A mixture of 14 (1.0 g) and selenium dioxide (0.608 g) in dioxane (11 mL) was stirred at 73 °C for 21 h. The cooled mixture was poured into water (50 mL) and extracted with ether (3 \times 20 mL). The dried (MgSO₄) extract was evaporated in vacuo and the residue purified by column chromatography (silica gel with 55% ether/petroleum ether) to give 20 (526 mg), 14 (421 mg), and 24 (58 mg). The recovered enone 14 (421 mg) was cycled through another selenium dioxide reaction to give 20 (174 mg) and 14 (212 mg), which on further recycling gave 20 (88.4 mg) and 14 (75 mg). The overall yield of 3β -hydroxy enone 20 is 788 mg, 75% after three cycles.

Conversion of the Hemiketal 23 into the 3β -Hydroxy Enone 20. To a stirred solution of the hemiketal 23 (4.4 mg, 0.01 mmol) in dry pyridine (0.5 mL) was added 4-(dimethylamino)pyridine (3.5 mg, 0.03 mmol) and the mixture stirred at 25 °C for 48 h. The mixture was evaporated in vacuo and the residue purified by PLC, eluting with ether to give 24 (2.9 mg, 89%).

 $3\beta\hbox{-}[(N\hbox{-}Ethoxycarbonyl)carbamoyl]\hbox{-}13\hbox{-}keto\hbox{-}5\hbox{-}[(\textit{tert}\hbox{-}butyldimethyl-}$ silyl)oxy]bicyclo[7.3.1]trideca-1,8-dlene-6,10-dlyne (25). A solution of the 3β -alcohol 20 (62 mg, 0.188 mmol) in dichloromethane (1.0 mL) was treated with ethoxycarbonyl isocyanate (26 µL, 1.2 equiv) at 25 °C for 1 h. The mixture was evaporated to give 25 (80 mg, 95%) as an unstable oil: ¹H NMR (300 MHz, CDCl₃) δ 7.36 (1 H, br s), 6.33 (1 H, m), 5.86 (1 H, d, J = 9.5 Hz), 5.80 (1 H, d, J = 9.5 Hz), 5.53 (1 H, m), 4.22 (2 Hz)H, q, J = 7.1 Hz), 3.67 (1 H, d, J = 16.4 Hz), 3.03 (1 H, d, J = 16.4Hz), 2.83 (1 H, ddd, J = 12.8, 6.5, 1.9 Hz), 2.16 (1 H, dd, J = 12.8, 9.5 Hz), 1.27 (3 H, t, J = 7.1 Hz), 0.89 (9 H, s), 0.18 (3 H, s), 0.15 (3 H,

When the above product was chromatographed over silica gel the, cyclic N-ethoxycarbonyl carbamate 26 was isolated (216 mg from 186 mg of 20, 86%): ¹H NMR (300 MHz, CDCl₃) δ 5.99 (1 H, d, J = 9.4Hz), 5.93 (1 H, d, J = 9.4 Hz), 5.39 (1 H, t, J = 8.1 Hz), 5.02 (1 H, q, J = 9.4 Hz), 5.39 (1 H, t, J = 8.1 Hz), 5.02 (1 H, q, J = 8.0, 8.1 Hz), 4.36 (2 H, q, J = 7.1 Hz), 3.28 (1 H, dd, J = 18.5, 4.3 Hz), 2.99 (2 H, m), 2.82 (1 H, dd, J = 13.9, 8.2 Hz), 2.25 (1 H, dd, J = 13.9, 9.0 Hz),1.38 (3 H, t, J = 7.1 Hz), 0.90 (9 H, s), 0.19 (3 H, s), 0.17 (3 H, s); ¹³C NMR (75 MHz, CDCl₃) δ 197.50, 151.43, 150.83, 126.25, 120.40, 99.66, 93.56, 92.40, 84.42, 71.67, 71.24, 64.00, 54.59, 51.40, 38.75, 25.67, 23.32, 18.30, 14.09, -3.13, -3.41; HRMS calcd for C₂₃H₂₉NO₆Si M⁺ 443.1768, found m/e 443.1764.

To a solution of the cyclic carbamate 26 (34 mg) in THF (2 mL) at -78 °C was added potassium hexamethyldisilazide (40 μL, 2.3 equiv of a 1 M solution in THF). After 40 min the mixture was quenched with NaHCO₃ to give after work-up 23 mg (68%) of a 1:1 mixture (¹H NMR) of **25** and **26**.

Cycloaromatization of the Cyclic Carbamate 26 to 30. A solution of the carbamate 26 (2 mg) in freshly distilled 1,4-cyclohexadiene (3 mL) was heated at 90 °C under an argon atmosphere for 15.5 h. The mixture was evaporated in vacuo and the residue purified by PLC (eluting with 60% ether/petroleum ether to give the aromatized adduct 28 (1 mg) and **26** (1 mg): ¹H NMR (300 MHz, CDCl₃) δ 7.61 (1 H, dd, J = 7.7, 1.2Hz), 7.37 (1 H, t, J = 7.5 Hz), 7.29 (1 H, dt, J = 7.4, 1.3 Hz), 7.14 (1 H, d, J = 7.6 Hz), 4.52 (1 H, d, J = 7.5 Hz), 4.39 (2 H, q, J = 7.3 Hz), 4.24 (1 H, m), 3.75 (1 H, br d, J = 4.8 Hz), 3.49 (1 H, dd, J = 17.2, 5.7 Hz), 3.24 (1 H, dd, J=17.2, 2.0 Hz), 2.72 (1 H, dd, J=13.0, 7.0 Hz), 2.31 (1 H, m), 1.40 (3 H, t, J=7.1 Hz), 0.95 (9 H, s), 0.14 (3 H, s), 0.00 (3 H, s); 13 C NMR (75 MHz, CDCl₃) δ 207.10, 151.89, 151.12, 141.60, 131.11, 128.64, 128.34, 127.65, 126.48, 76.79, 71.06, 64.73, 64.23, 47.84, 47.67, 37.78, 26.24, 14.15, -2.47, -2.74; HRMS calcd for $C_{22}H_{28}NO_6Si$ requires 430.1686, found m/e 430.1680.

Treatment of **26** (32 mg) in methanol (3 mL) with sodium carbonate (500 mg) at 25 °C for 2 h gave the deprotected cyclic carbamate **27**: 17 mg, 63%; ¹H NMR (300 MHz, CDCl₃) δ 7.23 (1 H, br s, NH), 5.92 (1 H, d, J=9.4 Hz), 5.85 (1 H, d, J=9.4 Hz), 5.09 (1 H, m), 4.83 (1 H, t, J=9 Hz), 3.30 (1 H, dd, J=17.9, 3.0 Hz), 2.82 (1 H, m), 2.78 (1 H, dd, J=13.7, 7.9 Hz), 2.63 (1 H, ddd, J=1.5, 4.2, 17.9 Hz), 2.28 (1 H, dd, J=9.4, 13.7 T, 9 Hz), 0.89 (9 H, s), 0.18 (3 H, s), 0.16 (3 H, s); ¹³C NMR (75 MHz, CDCl₃) δ 197.59, 159.15, 125.69, 120.84, 98.85, 93.56, 92.26, 84.42, 73.26, 72.36, 52.05, 51.52, 39.32, 25.72, 21.83, 18.29, -3.06, -3.33; HRMS calcd for $C_{20}H_{25}NO_4Si$ requires 371.1553, found m/e 371.1550.

3β-Carbamoyl-13-keto-5-[(tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]trideca-1,8-diene-6,10-diyne (29). To the alcohol 20 (526 mg, 1.6 mmol) and sodium cyanate (440 mg) suspended in dichloromethane (14 mL) was added dropwise trifluoroacetic acid (500 μL, 4.0 equiv) and the mixture stirred at 25 °C for 4 h. The mixture was poured onto saturated aqueous NaHCO₃ solution (10 mL) and extracted with ether (3 × 15 mL). The dried (MgSO₄) extract was evaporated in vacuo and the residue purified by chromatography over silica gel, eluting with 60% ether/petroleum ether to give 29: 530 mg, 89%; mp 168-170 °C dec; IR (CCl₄) 3555, 3440, 3330, 3266, 1736, 1725, 1580, 1320, 1250, 1165, 1050, 983, 840 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.37 (1 H, dd, J = 3.0, 2.1 Hz), 5.83 (2 H, s), 5.49 (1 H, ddd, J = 3.3, 6.4, 9.6 Hz), 4.77(2 H, br s), 3.68 (1 H, d, J = 16.4 Hz), 3.06 (1 H, d, J = 16.4 Hz), 2.82(1 H, ddd, J = 1.8, 6.4, 12.9 Hz), 2.17 (1 H, dd, J = 9.8, 12.9 Hz), 0.92 (9 H, s), 0.21 (3 H, s), 0.18 (3 H, s); ¹³C NMR (75 MHz, CDCl₃) δ 190.91, 155.52, 138.57, 135.76, 124.63, 120.90, 99.65, 94.99, 91.87, 87.90, 74.99, 69.08, 41.58, 25.79, 23.93, 18.32, -2.97, -3.27; HRMS calcd for $C_{20}H_{25}NO_4Si$ 371.1553, found m/e 371.1556. Anal. Calcd for C₂₀H₂₅NO₄Si: C, 64.66; H, 6.78; N, 3.77. Found: C, 64.67; H, 6.85;

Silylation and Cyclization of 30 to give the Enone 31. To a solution of the carbamate 29 (62.3 mg) in dichloromethane (3 mL) and triethylamine (600 μ L) was added *tert*-butyldimethylsilyl triflate (80 μ L). After 10 min at 25 °C the solution was poured into saturated aqueous NaHCO₃ solution (5 mL) and extracted with ether (10 mL). The dried (MgSO₄) extract was evaporated in vacuo and the residue purified by PLC, eluting with 40% ether/petroleum ether to give the N-silylated derivative 30: 77 mg, 95%; IR (CHCl₃) 3490, 2929, 2856, 1723, 1703, 1471, 1343, 1305, 1279, 1255, 1165, 1115 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.36 (1 H, br s), 5.80 (1 H, d, J = 10 Hz), 5.78 (1 H, d, J = 10 Hz), 5.52 (1 H, m), 3.67 (1 H, d, J = 16.4 Hz), 3.02 (1 H, d, J = 16.4 Hz), 2.77 (4 H, m), 2.12 (1 H, m), 0.90 (9 H, s), 0.88 (9 H, s), 0.21 (6 H, br s), 0.18 (3 H, s), 0.15 (3 H, s); ¹³C NMR (75 MHz, CDCl₃) δ 191, 158, 138, 136, 125, 121, 99, 95, 92, 88, 75, 42, 27, 26, 24, 20, 18, -3, -3.5. This product was used directly in the next step.

Conversion of 30 into 31/32 and 33. To a solution of 30 (15 mg) in dry THF (1.0 mL) under argon at -78 °C was added potassium bis-(trimethylsilyl)amide (145 μ L, 0.5 M solution, 2.5 equiv) and the resultant mixture was stirred for 15 min. A solution of N-(phenylseleneno)phthalimide (40 mg) in THF (0.5 mL) was added and the resulting mixture stirred at -78 °C for 1 h and allowed to warm to 20 °C. The mixture was quenched with saturated aqueous NaHCO3 solution and extracted with ether (2 \times 10 mL). The dried (MgSO₄) extract was evaporated and the residue purified by PLC (20% ether/petroleum ether to give a mixture of 31/32 (15.9 mg, 2:1). The mixture of 31/32was dissolved in dichloromethane (3 mL)/pyridine (20 μ L) at -35 °C and treated with hydrogen peroxide (200 μ L, 30% aqueous solution). Work-up as above gave 33: 6 mg, 40% overall; IR (CCl₄) 2954, 2030, 2858, 1759, 1744 (8 h), 1472, 1369, 1346, 1255, 1197, 1166, 1123 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.78 (1 H, d, J = 9.7 Hz), 5.74 (1 H, dd, J = 9.7, 1.5 Hz), 5.67 (1 H, d, J = 1.5 Hz), 5.31 (1 H, ddd, J = 8.75, 2.5, 3.1 Hz), 4.66 (1 H, d, J = 8.75 Hz), 2.88 (1 H, dd, J = 15.8, 2.5 Hz), 2.59 (1 H, dd, J = 15.8, 3.1 Hz), 0.23, 0.24, 0.28 (12 H), 0.89, 0.96 (18 H); 13 C NMR (75 MHz, CDCl₃) δ 196.36, 159.33, 155.81, 124.76, 124.31, 112.75, 99.91, 98.56, 96.85, 91.6, 80.21, 74.96, 62.68, 26.69, 25.52, 19.26, 18.17, -3.24, -3.54, -4.59, -5.03; HRMS calcd for C₂₆- $H_{37}NO_4Si_2$ 483.226, found m/e 483.2237.

For 32: 3 mg, 20% overall; IR (CCl₄) 2956, 2930, 2897, 2885, 1755, 1743, 1472, 1325, 1256, 1193, 1177, 1109, 950, 865 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.94 (1 H, d, J = 9.2 Hz), 5.86 (1 H, d, J = 9.7 Hz), 4.90 (1 H, m), 4.70 (1 H, dd, J = 9.8, 7.1 Hz), 3.29 (1 H, dd, J = 17.8, 3.0 Hz), 2.78 (1 H, m), 2.67 (1 H, ddd, J = 17.8, 4.2, 1.7 Hz), 2.76 (1 H, dd, J = 14.2, 7.0 Hz), 0.98 (9 H,

s), 0.88 (9 H, s), 0.34, 0.29, 0.16, 0.13 (12 H); $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃) δ 198.65, 161.05, 125.58, 121.14, 98.96, 93.58, 92.61, 85.51, 73.58, 71.80, 55.76, 52.03, 38.47, 21.80, 27.31, 25.72, 19.43, 18.27, -3.08, -3.36, -3.88, -4.18; HRMS calcd for $C_{26}H_{39}NO_4Si_2$ 485.2418, found m/e 485.2402.

Conversion of 32 into 33. A solution of the ketone 32 (95 mg, 0.19 mmol) in THF (4 mL) at -78 °C was treated with potassium bis(trimethylsilyl)amide (780 μ L, 0.5 M in toluene) and the resulting dark brown solution stirred at -78 °C for 15 min. A solution of N-(phenylseleneno)phthalimide (200 mg, 3.5 equiv) in THF (2 mL) was added dropwise and the mixture warmed to -10 °C over 2 h. The mixture was quenched with saturated aqueous NaHCO₃ solution (5 mL) and extracted with ether (3 × 10 mL). The dried (MgSO₄) extracts were evaporated in vacuo and the residue was dissolved in dichloromethane (2 mL) and pyridine (350 μ L). The solution was cooled to -78 °C and hydrogen peroxide (1000 μ L, 30% aqueous solution) added. After 1 h at 20 °C the mixture was worked up as above and the residue purified by PLC, eluting with ether/petroleum ether (60%) to give the enone 33 (42 mg, 44%, 75% based on recovered starting material) and 32 (35 mg, 37%).

Conversion of 33 into 34. The enone 33 (40 mg) in THF (3 mL) and water (750 μ L) was treated with trifluoroacetic acid (300 μ L) at 20 °C for 6 h. The mixture was quenched with saturated aqueous NaHCO₃ solution (3 mL) and extracted with ether (5 mL). The dried (MgSO₄) solution (3 mL) and extracted with ether (5 mL). The dried (MgSO₄) with ether to give 34: 25 mg 70%; IR (CH₂Cl₂) 3683, 3448, 2955, 2955, 2931, 1775, 1738, 1225, 1167 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.76 (3 H, br m, J = 10, 1.6 Hz), 5.45 (1 H, dt, J = 9.0, 2.8 Hz), 5.25 (1 H, br s), 4.73 (1 H, d, J = 9.0 Hz), 2.93 (1 H, ABX, J = 16, 2.8 Hz), 2.63 (1 H, ABX, J = 16, 2.8 Hz), 0.91 (9 H, s), 0.24 (3 H), 0.25 (3 H); ¹³C NMR (75 MHz, CDCl₃) δ 201.0, 156.49, 154.08, 124.78, 124.37, 113.23, 99.39, 98.35, 97.07, 92.35, 81.12, 74.99, 57.26, 40.36, 25.52, 18.14, -3.25, -3.48; HRMS calcd for C₂₀H₂₃NO₄Si 369.1396, found m/e 369.1388.

(E)-14-Cyano-5-[(tert-butyldimethylsilyl)oxy]bicyclo[7.3.1]trideca-1,8,13-triene-6,10-diyne (35). To a suspension of NaH (23 mg, 960 µmol) in dimethoxyethane (2 mL) at 0 °C was added diethyl cyanomethylphosphonate (150 μ L, 880 μ mol) dropwise, and the mixture stirred until the evolution of hydrogen was complete. The solution was warmed to 25 °C and transferred via a syringe to a solution of the ketone 14 (285 mg, 91 μmol) in dimethoxyethane (2 mL) at -45 °C (CO₂/CH₃CN). After 5 min the mixture was warmed to 25 °C and kept at this temperature for 4 h. The orange solution was poured into saturated aqueous NaHCO₃ solution (10 mL) and extracted with ether (3 \times 10 mL). The dried (MgSO₄) extract was evaporated in vacuo to give a residue which was purified by chromatography over silica gel, eluting with 10% ether/petroleum ether, to give 35 (274 mg, 90%) as a colorless oil: IR (CCl₄) 2922, 2884, 2858, 2220, 1642, 1462, 1428, 1246, 1130, 800 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.91 (1 H, br t, J = 4 Hz), 5.80 (1 H, ddd, J = 9.5, 1.3, 0.7 Hz), 5.77 (1 H, d, J = 9.5 Hz), 5.75 (1 H, m), 4.12 (1 H, dd, J = 17.8, 1.3 Hz), 3.27 (1 H, d, J = 17.8 Hz), 2.46 (1 H, m),2.39 (1 H, m), 2.18 (1 H, dddd, J = 13.1, 6.7, 1.6, 0.9 Hz), 1.88 (1 H,ddd, J = 13.1, 10.0, 7.5 Hz), 0.92 (9 H, s), 0.25 (3 H, s), 0.22 (3 H, s); ¹³C NMR (75 MHz, CDCl₃) δ 162.58 (s), 133.40 (d), 132.81 (s), 124.48 (d), 121.15 (d), 117.60 (s), 101.40 (s), 97.3 (s), 88.1 (d), 85.8 (s), 88.8 (s), 71.32 (s), 35.24 (t), 26.61 (t), 25.7 (q), 25.2 (t), 18.1 (s), -2.97 (q), -3.18 (q); HRMS calcd for $C_{21}H_{25}NOSi$ 335.1705, found m/e 335.1712.

(E)-14-(Hydroxymethyl)-5-[(tert-butyldimethylsilyl)oxy]bicyclo-[7.3.1]trideca-1,8,13-triene-6,10-diyne (36). To a solution of the cyanide 35 (141.5 mg, 0.422 mmol) in toluene (6.4 mL) at -78 °C was added DIBAL-H in toluene (507 µL, 1.2 equiv of a 1.0 M solution). After 10 min at -78 °C the mixture was allowed to warm to 20 °C for 20 min and recooled to -78 °C. The mixture was quenched by the dropwise addition of 2 N HC1 (5 mL), warmed to room temperature, poured into 1 M aqueous sodium tartrate solution (5 mL), and extracted with ether (10 mL). The dried (MgSO₄) extract was evaporated in vacuo and the residue purified by chromatography over silica gel, eluting with 12% ether/petroleum ether, to give the aldehyde: 134 mg, 93%; ¹H NMR (300 MHz, CDCl₃) δ 10.07 (1 H, d, J = 7.40 Hz), 6.29 (1 H, d, J = 7.40Hz), 5.98 (1 H, t, J = 3.7 Hz), 5.82 (1 H, d, J = 9.6 Hz), 5.78 (1 H, d, J = 9.6 Hz), 3.52 (1 H, d, J = 17.3 Hz), 3.32 (1 H, d, J = 17.3 Hz), 2.43 (2 H, m), 2.22 (1 H, m), 1.89 (1 H, m), 0.93 (9 H, s), 0.25 (3 H, s), 0.23 (3 H, s). The aldehyde 35a (134 mg, 0.396 mmol) in toluene (6.4 mL) at -78 °C was treated with DIBAL-H (476 μL, 1.0 M in toluene, 1.2 equiv). After 10 min at -78 °C the mixture was rapidly (2 min) warmed to room temperature, cooled to -78 °C, and quenched with 2 N HCl (4.5 mL). Work-up, as above, gave the allylic alcohol 36 (120.7 mg, 89.5%) as a colorless oil: IR (CCl₄) 3624, 3500, 2964, 2938, 2860, 2190, 1662, 1468, 1250, 1130, 1080, 892, 780 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.96 (1 H, t, J = 6.9 Hz), 5.78 (1 H, dt, J = 9.4, 0.8 Hz), 5.74 (1 H, dt, J = 9.4, 1.2 Hz), 5.73 (1 H, m), 4.34 (1 H, dd, J = 12.7, 6.5)

Hz), 4.26 (1 H, dd, J = 12.7, 7.3 Hz), 3.26 (2 H, AB, J = 18.0 Hz), 2.25-2.42 (2 H, m), 2.14 (1 H, ddd, J = 13.0, 7.2, 2.0 Hz), 1.83 (1 H, m), 1.6 (1 H, br s), 0.94 (9 H, s), 0.24 (3 H, s), 0.23 (3 H, s); ¹³C NMR (125.8 MHz, CDCl₃) δ 143.5 (s), 133.9 (s), 129.6 (d), 123.5 (d), 122.0 (d), 119.5 (d), 102.0 (s), 100.9 (s), 85.3 (s), 85.1 (s), 77.4 (s), 59.9 (t), 36.8 (t), 29.0 (t), 25.9 (q), 24.9 (t), 18.3 (s), -2.7 (q), -2.9 (q); HRMS calcd for $C_{21}H_{28}O_2Si - tBu$ ($C_{17}H_{19}O_2Si$) 283.1154, found m/e 283.1156.

Conversion of the Allyl Alcohol 36 into Its Derived Thioacetate 36. To a solution of the alcohol 36 (106 mg) in dichloromethane (10 mL) was added Et₃N (450 µL) and the mixture cooled to -12 °C. Methanesulfonyl chloride (90 µL) was added and the mixture stirred for 15 min. A solution of freshly prepared sodium thioacetate (300 mg, 10 equiv) in methanol (2 mL) was added to the above mixture. After 1 h at 20 °C the mixture was poured into water (5 mL) and extracted with dichloromethane (2 × 5 mL). The dried (MgSO₄) extract was evaporated in vacuo and the residue chromatographed over silica gel, eluting with 20% ether/petroleum ether, to give 37 (114.2 mg, 92%) as a colorless oil: IR (film) 2958, 2930, 2860, 1695, 1255, 1130, 840, 780 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.73-5.79 (4 H, m), 3.60-3.70 (2 H, ABX, J_{AB} = 13.5 Hz), 3.31 (1 H, d, J = 17.2 Hz), 3.25 (1 H, d, J = 17.2 Hz), 2.33 (3 H, s), 2.32 (2 H, m), 2.12 (1 H, m), 1.80 (1 H, ddd, J = 13.0, 9.5, 7.9Hz), 0.91 (9 H, s), 0.22 (3 H, s), 0.20 (3 H, s); ¹³C NMR (125 MHz, CDCl₃) δ 195.5 (s), 144.0 (s), 133.6 (s), 130.3 (d), 123.6 (d), 121.9 (d), 115.2 (d), 102.0 (s), 100.9 (s), 85.3 (s), 85.0 (s), 71.5 (s), 37.1 (t), 30.4 (q), 28.6 (t), 28.2 (t), 25.9 (q), 24.9 (t), 18.3 (s), -2.8 (q), -3.0 (q); HRMS calcd for C₂₃H₃₀O₂SiS 398.1736, found m/e 398.1718.

S-Benzyl Trisulfide Adduct 38. Treatment of a solution of the thioester 37 (11.4 mg) in ether (1.5 mL) with lithium aluminum hydride (35 μL, 1 M solution) at 0 °C for 10 min followed by warming to 20 °C for 0.5 h gave intermediate thiol 37a, which was not isolated but used directly. Treatment of the thiol with N-(benzylthiosulfenyl)phthalimide (20 mg) in dichloromethane (0.8 mL) at 20 °C for 1 h gave the trisulfide 38 (13.4 mg, 92%) after purification by PLC, eluting with 10% ether/ petroleum ether: IR (film) 2960, 2935, 2858, 1458, 1252, 1138, 1112, 836, 780 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (5 H, m), 5.89 (1 H, m), 5.78 (1 H, d, J = 9.4 Hz), 5.75 (1 H, J = 9.4 Hz)m), 4.08 (2 H, $J_{AB} = 2.7$ Hz), 3.56–3.65 (2 H, ABX, $J_{AB} = 12.7$ Hz), 3.40 (1 H, d, J = 17.1 Hz), 3.26 (1 H, d, J = 17.1 Hz), 2.24–2.40 (2 H, m), 2.13 (1 H, m), 1.85 (1 H, ddd, J = 13.0, 9.3, 7.9 Hz), 0.93 (9 H, s), 0.23 (3 H, s), 0.21 (3 H, s); 13 C NMR (125 MHz, CDCl₃) δ 145.1

(s), 136.6 (s), 133.8 (s), 130.4 (d), 129.5 (d), 128.6 (d), 127.6 (d), 123.6 (d), 121.9 (d), 115.4 (d), 102.2 (s), 100.9 (s), 85.3 (s), 85.1 (s), 71.7 (s), 43.1 (t), 37.24 (t), 37.23 (t), 28.7 (t), 25.9 (q), 24.9 (t), 18.3 (s), -2.7 (q), -2.9 (q); HRMS calcd for $C_{28}H_{34}OSiS_3$ 510.1540, found m/e510.1525. S-Methyl derivative: ¹H NMR (500 MHz, CDCl₃) δ 5.91 (1 H, m), 5.78 (3 H, m), 3.40 (1 H, d, J = 17 Hz), 3.28 (1 H, d, J = 17 Hz)17 Hz), 2.43 (3 H, s), 2.36 (2 H, m), 2.36 (2 H, m), 2.17 (1 H, m), 1.86 (1 H, m), 0.95 (9 H, s), 0.23 (3 H, s), 0.21 (3 H, s).

Cyclic Sulfide 40. To a solution of the alcohol 36 (11.9 mg, 36.8 μ mol) in dichloromethane (1.5 mL) at -15 °C were added triethylamine (50 μ L) and methanesulfonyl chloride (10 μ L). After 15 min potassium ethylxanthate (50 mg) was added and the mixture warmed to 20 °C. The mixture was quenched with saturated aqueous NaHCO3 and extracted with dichloromethane (2 \times 5 mL). The dried (MgSO₄) extract was evaporated in vacuo and the residue purified by PLC, eluting with 20% ether/petroleum ether, to give the xanthate 39 (12.5 mg, 80.5%). The xanthate 39 (11.8 mg) in dichloromethane (0.5 mL) was treated with ethylenediamine (0.5 mL) at 20 °C for 1 h. Evaporation in vacuo and chromatography of the residue over silica gel gave the cyclic sulfide 40: 6 mg, 60%; ¹H NMR (500 MHz, CDCl₃) δ 6.22 (1 H, dd, J = 10.9, 3.0 Hz), 6.14 (1 H, ddd, J = 3.4, 2.1, 0.7 Hz), 5.96 (1 H, ddd, J = 8.9, 8.0, 1.1 Hz), 5.52 (1 H, m), 5.44 (1 H, dd, J = 10.9, 2.1 Hz), 3.75 (1 H, dd, J = 13.2, 5.9 Hz), 3.48 (2 H, m), 2.92 (1 H, dd, J = 13.2, 8.0 Hz), 2.33 (2 H, m), 2.05 (1 H, m), 1.83 (1 H, dt, J = 13.2, 3.4 Hz), 0.93 (9 H, s), 0.22 (3 H, s), 0.19 (3 H, s); $^{13}\text{C NMR}$ (125 MHz, CDCl₃) δ 148.3, 140.6, 137.3, 129.6, 129.5, 127.2, 114.0, 113.4, 104.8, 90.7, 72.5, 39.9, 35.5, 26.5, 25.9, 24.0, 18.2, -3.0, 3.1; HRMS calcd for $C_{21}H_{28}OSiS$ 356.1630, found m/e 356.1624.

Acknowledgment. The National Institutes of Health (CA 50512), National Science Foundation, and Robert A. Welch Foundation are thanked for their support of this research. Dr. Jason Elliott is thanked for earlier contributions to this work.

Supplementary Material Available: Details of the X-ray structure determination of 13, 22, and 23 and tables of fractional coordinates, isotropic thermal parameters, anisotropic thermal parameters, bond lengths, bond angles (58 pages). Ordering information is given on any current masthead page.

Applications of an Asymmetric [2 + 2]-Photocycloaddition. Total Synthesis of (-)-Echinosporin. Construction of an Advanced 11-Deoxyprostaglandin Intermediate

Amos B. Smith, III,* Gary A. Sulikowski, Michelle M. Sulikowski, and Katsumi Fujimoto

Contribution from the Department of Chemistry, the Monell Chemical Senses Center, and the Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104. Received September 16, 1991

Abstract: The first total synthesis of the novel antitumor metabolite (-)-echinosporin (1) has been achieved. Asymmetric [2 + 2]-photocycloaddition of dihydrofuran acetonide (+)-8 to 2-cyclopentenone (7) constituted the cornerstone of the synthetic strategy. Mitsunobu lactonization of hemiacetal acid 43 generated the tricyclic framework of 1, which embodies a strain energy of ca. 17 kcal/mol as estimated by MNDO calculations. The successful synthetic venture permitted assignment of the absolute configuration of echinosporin. Construction of the Corey 11-deoxyprostaglandin intermediate (+)-49 further demonstrated the utility of (+)-8 as a chiral building block.

The isolation of (-)-echinosporin (XK-213) from the fermentation broth of Streptomyces echinosporus was reported by a group from the Kyowa Hakko Kogyo Co. (Japan) in 1981.1 The structure of 1, initially deduced via spectroscopic and chemical

methods, was later confirmed by a single-crystal X-ray analysis.² Although 1 displays modest activity against Gram-negative bacteria, its efficacy against several rodent tumor models appears promising.³ Moreover, in vitro studies have implicated the in-

^{(1) (}a) lida, T. N.; Hirayama, N.; Shirahata, K. Abstr. Papers, 44th Annu. Meeting Jpn. Chem. Soc., October 12, 1981, 1E-18, pp 403. Kyowa Hakko Kogyo Co., Ltd. Jpn. K. Tokkyo Koho 1981, 59, 777. (b) Sato, T.; Kawamoto, I.; Oka, T.; Okachhi, R. J. Antibiot. 1982, 35, 266.

⁽²⁾ Hirayama, N.; Iida, T.; Shirahata, K.; Ohashi, Y.; Sasada, Y. Bull. Chem. Soc. Jpn. 1983, 56, 287.
(3) Morimoto, M.; Imai, R. J. Antibiot. 1985, 38, 490.